Главная » Журнал «Инновации.Технологии.Решения» » Нетрадиционная энергетика и энергоресурсосбережение
Контакты English

Нетрадиционная энергетика и энергоресурсосбережение

С. В. Алексеенко, член-корреспондент РАН,
директор Института теплофизики СО РАН, г. Новосибирск

  

В данной статье предлагается общая характеристика нетрадиционной энергетики, чтобы показать ее вклад в целом в энергетику и вклад Сибирского отделения в развитие нетрадиционной энергетики.

 

Выделяют четыре направления энергетики: традиционная энергетика на органическом топливе (уголь, газ, нефть, нефтепродукты); гидроэнергетика; атомная энергетика; возобновляемые источники энергии (ВИЭ).

Кроме того, в энергетике пользуются следующими понятиями: большая и малая энергетика; альтернативные источники энергии; централизованная энергетика и автономные источники энергии; нетрадиционная энергетика; нетрадиционные возобновляемые источники энергии (НВИЭ).

В понятие нетрадиционная энергетика мы будем вкладывать четыре основных направления.

  1. Возобновляемые источники энергии (солнечная энергия, ветровая, биомасса, геотермальная, низкопотенциальное тепло земли, воды, воздуха, гидравлическая, включая мини-ГЭС, приливы, волны). Подчеркнем, что большие ГЭС обычно не включаются в возобновляемые источники энергии.
  2. Вторичные возобновляемые источники энергии (твердые бытовые отходы - ТБО, тепло промышленных и бытовых стоков, тепло и газ вентиляции).
  3. Еще одно направление: нетрадиционные технологии использования невозобновляемых и возобновляемых источников энергии (водородная энергетика; микроуголь; турбины в малой энергетике; газификация и пиролиз; каталитические методы сжигания и переработки органического топлива; синтетическое топливо - диметиловый эфир, метанол, этанол, моторные топлива).
  4. Следующее направление - это энергетические установки (или преобразователи), которые существуют обычно независимо от вида энергии. К таким установкам следует отнести: тепловой насос, машину Стирлинга, вихревую трубку, гидропаровую турбину и установки прямого преобразования энергии - электрохимические установки и, прежде всего, топливные элементы, фотоэлектрические преобразователи, термоэлектрические генераторы, термоэмиссионные установки, МГД-генераторы.

А теперь покажем роль в целом нетрадиционной энергетики и ее вклад в энергообеспечение. Вначале обратимся к очень важному графику, который показывает взаимосвязь между ВВП (валовым внутренним продуктом) и душевым энергопотреблением (рис. 1).

Image

Считается, чем больше энергопотребление, тем выше уровень жизни. Также полагается, что при превышении некоторого критического уровня ВВП, равного примерно 18 тысячам долларов на человека, общество чувствует себя комфортно, и дальнейшее увеличение ВВП уже не оказывает столь радикального влияния.

В нижней части графика находятся такие страны с низким энергопотреблением и уровнем жизни, как Китай и Индия. Россия тоже, к сожалению, находится в нижней части графика, хотя имеет весьма высокий уровень энергопотребления. Значительно выше критического уровня находятся страны ЕС, Япония, США, Канада. Но при этом четко выделяются две группы стран с высоким уровнем жизни. Один и тот же высокий уровень жизни может быть достигнут при существенно различных уровнях энергопотребления. Это означает, что такие страны, как Япония, Германия и другие, очень большое внимание уделяют энергосбережению.

Учитывая, что основная задача энергетики заключается в необходимости достаточного энергообеспечения, можно сделать вывод, что необходимый уровень энергообеспечения достигается не только валовым количеством производства энергии, но и путем энергоресурсосбережения. Этот же вывод касается и России. Как показано стрелками на графике, достичь высокого уровня жизни можно как огромным увеличением производства энергии (это очень длительный путь), так и используя принципы энергоресурсосбережения, почти не увеличивая производство энергии. В этом состоит чрезвычайно тесная связь между производством энергии, потреблением энергии и энергоресурсосбережением.

Для России потенциал энергосбережения просто огромен. Он составляет более 40% от общего энергопотребления. Это означает, что почти половину производимой энергии мы тратим впустую, обогревая внешнюю среду. Но для реализации такого потенциала энергосбережения необходимы значительные целевые инвестиции, которых у России просто нет. Потенциал возобновляемых источников энергии в России еще больше. Если говорить о техническом потенциале, то есть потенциале, который может быть реализован на современном уровне развития техники, то для России он составляет 4,6 млрд т у.т . А это в 5 раз больше общего энергопотребления. Если говорить о цифрах по разным видам ВИЭ, то они следующие: биомасса - 53 млн т у. т., солнечная энергия - 2300, ветровая энергия - 2000, геотермальная энергия - 180, низкопотенциальное тепло - 115, энергия малых водотоков - 125.

Существующий на сегодня вклад ВИЭ в энергетику виден из двух таблиц, которые демонстрируют установленную мощность ВИЭ в мире по различным видам энергии и вклад ВИЭ в общее энергопотребление и производство электроэнергии. Наибольший вклад в производство тепла дает биомасса, а в производство электроэнергии - биомасса, малые реки и ветер. Но в целом вклад ВИЭ, например в мировое производство электроэнергии, чрезвычайно мал - всего 1,6%. Как сегодня, так и в обозримом будущем (до 2020 года) в России вклад ВИЭ в энергетику пренебрежимо мал - 1-2% по производству электроэнергии. Это прогноз в соответствии с Энергетической стратегией РФ. В то же время в Европейском сообществе планы грандиозные и более чем на порядок превышают планы России. По последним данным 48 стран, в том числе 14 развивающихся, планируют к 2012 году производить от 5 до 30% электроэнергии за счет ВИЭ. Другие данные: в 2004 году наблюдался резкий рост инвестиций в мире в развитие ВИЭ - 30 млрд долл. А это 20-25% от общих инвестиций в энергетику.

Image

Тогда каковы же побудительные мотивы использования возобновляемых источников энергии в России, учитывая их пренебрежимо малый вклад в энергетику? В целом мотивы такие же, как и для энергоресурсосбережения. Прежде всего, истощаемость запасов органического топлива. Так, по официальным прогнозам легко добываемого газа в России хватит на 80 лет, а нефти - на 20 лет. Другой мотив - энергетическая безопасность страны. Далее - экология. Общеизвестно, что наибольший вклад в загрязнение окружающей среды вносит традиционная энергетика на органическом топливе. А, в частности, в соответствии с Киотским протоколом в 2008-2012 годах выбросы СО2 должны оставаться на уровне 1990 года, что означает значительное сокращение темпов сжигания органического топлива традиционными методами. Хотя для России в связи с резким сокращением промышленного производства последняя проблема неактуальна.

По-видимому, для России главным побудительным мотивом использования ВИЭ является специфика, связанная с труднодоступностью многих районов страны (особенно, Сибири) для централизованного энергоснабжения. По некоторым оценкам от 50 до 70% территории России с населением 20 млн человек не охвачены централизованным электроснабжением. И поэтому для многих регионов возобновляемые источники энергии могут быть единственным источником энергии, а значит, и существования. К сожалению, в России практически никакого внимания не уделяется развитию нетрадиционной энергетики и в особенности ВИЭ. Выполняются в основном инициативные проекты. В частности, по программе энергосбережения СО РАН на 2005 год из 42 финансируемых проектов 13 посвящены непосредственно нетрадиционной энергетике, включая тепловые насосы, переработку биомассы, глубокую переработку угля, газификацию, солнечную энергетику и т. д. В этих проектах участвуют почти все соответствующие институты СО РАН, однако целевая направленность на развитие исследований по нетрадиционной энергетике отсутствует. Дадим краткую характеристику всем основным направлениям нетрадиционной энергетики. И начнем с наиболее общего направления - энергетических установок, имея в виду установки, характерные для нетрадиционных методов энергетики.

Энергетические установки (преобразователи)

Несомненно, наиболее важным устройством нетрадиционной энергетики и энергоресурсосбережения является тепловой насос, хотя более общим понятием является термотрансформатор, который может работать в различных режимах - теплового насоса, холодильной машины, машины для комбинированного производства тепла и холода.

Особенность теплового насоса состоит в том, что произведенное тепло всегда больше подведенной энергии от энергоисточника высокого потенциала. Суть заключается в том, что тепло производится не только за счет энергии энергоисточника (газа, угля, электрической энергии или пара), но и за счет дополнительной тепловой энергии, отбираемой от низкопотенциального источника, то есть источника с более низкой температурой (геотермального источника, жидких промышленных или бытовых стоков, воздуха, грунта, реки). В промышленно выпускаемых установках экономия топлива составляет 20-70%. Возможный диапазон температур низкопотенциального источника очень широкий (от +80°С до -17°С).

Во многих развитых странах тепловые насосы являются основой энергосберегающей политики. Так, в Швеции 22% домов (350 тысяч) обогреваются тепловыми насосами. В мире насчитывается около 40 млн штук тепловых насосов, в то время как в России всего 140 штук. Планируется, что к 2020 году вклад тепловых насосов в теплоснабжение в развитых странах составит 75%. В России тепловым насосам не уделяется никакого внимания. Основные разработчики и производители отечественного оборудования располагаются в Новосибирске. Научное сопровождение выполняет Институт теплофизики СО РАН. ООО «Теплосибмаш» производит абсорбционные машины. На сегодня выпущено 6 тепловых насосов и 7 холодильных машин общей мощностью 23 МВт. ЗАО «Энергия» и СКБ «ИПИ» выпускают парокомпрессионные тепловые насосы и холодильные машины мощностью до 5 МВт. Именно они обеспечили упомянутый выше выпуск тепловых насосов в России.

Незаслуженно мало внимания уделяется двигателю Стирлинга. Он работает с максимально возможным КПД, как и машины на цикле Карно. Это двигатель внешнего сгорания, он имеет простую конструкцию и может работать практически от любого источника энергии. Рабочим телом являются газы типа водорода или гелия, то есть это экологически чистый двигатель. Сегодня он привлекает очень много внимания в связи с его использованием в системах автономного энергообеспечения. Пока он не получил широкого распространения. Но в качестве примера его применения к возобновляемым источникам энергии можно привести недавно запущенную в эксплуатацию демонстрационную ТЭЦ на древесине в Австрии мощностью 35 МВт (эл) и КПД 20%. Это небольшой КПД, но в этих же условиях КПД паросилового цикла раза в 2 меньше.

Очень простым устройством, которое применяется для локального нагрева, охлаждения, кондиционирования, осушения газов является так называемая вихревая трубка или трубка Ранка-Хилша. В этом устройстве происходит разделение воздуха на горячий и холодный с перепадом температур до 100 градусов. Устройство представляет собой участок цилиндрической трубки с тангенциальным вводом воздуха под большим давлением (десятки атмосфер). При этом по центру трубки выводят холодный воздух, а по периферии с другого конца трубки - горячий. Такое устройство имеет низкий КПД и характеризуется очень высоким уровнем шума в связи с высокими скоростями воздуха. Но из-за своей простоты и дешевизны широко применяется в технике и сейчас планируется к использованию в комбинированных энергетических установках.

При сжигании топлив основным устройством являются горелки разного типа. Хотелось обратить бы внимание на новую горелку, разработанную недавно в ИТ СО РАН. Ее особенность состоит в том, что к топливу и воздуху добавляется еще и водяной пар, вследствие чего происходят промежуточные процессы газификации и, как следствие, экологически чистое сжигание топлива. Такая горелка предназначена для сжигания некондиционных жидких топлив, а в перспективе и для экологически чистого сжигания разнообразных горючих отходов. Изготовлены демонстрационные образцы мощностью до 10 кВт. Проявлен интерес к этим горелкам в Томске-7 с целью промышленного производства и применения для энергетических целей.

Несомненно, наибольший интерес привлекают методы прямого преобразования энергии. К ним относятся электрохимические, фотоэлектрические, термоэлектрические, термоэмиссионные и магнитогидродинамические (МГД) преобразователи. Из электрохимических преобразователей сегодня наибольший интерес (и даже бум) вызывают топливные элементы. В топливных элементах происходит прямое преобразование химической энергии в электрическую.  В отличие от гальванических элементов здесь имеются расходуемые материалы - топливо и окислитель. Наиболее популярная схема - это применение водорода в качестве топлива, а кислорода в качестве окислителя. При этом единственным продуктом электрохимической реакции является вода, то есть топливный элемент представляет собой совершенно чистый с экологической точки зрения источник энергии. С энергетической точки зрения привлекательность топливных элементов (ТЭ) состоит в максимальном на сегодня коэффициенте полезного действия (то есть коэффициенте преобразования химической энергии в электрическую) - до 50-70%. Однако для того, чтобы химическая реакция протекала с достаточной скоростью, необходимо использовать катализаторы - металлы платиновой группы. Хотя топливные элементы были предложены более полутора веков назад, пока они не получили промышленного применения в связи с дороговизной устройств и стоимости генерируемой электроэнергии, а также в связи с техническими проблемами, решение которых возможно лишь на новом уровне развития техники.

Сейчас в мире отмечается резкий скачок интереса к этим устройствам. Множество фирм и научных организаций работают над различными схемами и практическими приложениями топливных элементов. Основной интерес проявляется со стороны энергетики, космической техники, транспорта, микроэлектроники. Одна из технических проблем состоит в том, что для электродов (катода) и мембран необходимо использовать высокоразвитые поверхности. И здесь надежда связывается с достижениями в области нанотехнологий, которые позволяют производить наноструктуры типа нанотрубок, наноконусов, фуллеренов с размерами в несколько нанометров. И именно такие наноструктуры могут быть основой для принципиально новых и высокоэффективных составляющих топливных элементов. Сегодня уже есть примеры применения топливных элементов в энергетике, но их суммарная мощность пока составляет несколько десятков МВт. Заметим, что топливные элементы на водороде - это многообещающий, но не единственный тип топливных элементов. Проявляется интерес к портативным топливным элементам на жидком топливе (метанол, соединения бора), а также топливным элементам с использованием алюминия в качестве топлива. В отличие от водорода алюминий и соединения бора являются совершенно безопасными и экологически чистыми.

Следующий тип устройства прямого преобразования энергии - это термоэмиссионный преобразователь. Принцип действия основан на эмиссии электронов при сильном нагреве эмиттера. Это устройство типа электронной лампы. В качестве источника энергии можно применять ядерное топливо, органическое топливо, солнечное излучение. Одно из наиболее перспективных направлений в данной области связано с созданием автономных ядерных энергетических установок с термоэмиссионным реактором-преобразователем.

Что касается термоэлектричества, то оно давно используется в технике и основано на эффекте Пелтье. Последний заключается в возникновении термоЭДС в замкнутой цепи из двух разнородных проводников (полупроводников) с разной температурой спаев. Такие системы обладают очень низким КПД (2-3%), но есть и много достоинств - автономность, компактность, безопасность, бесшумность. Ряд проектов по этому направлению ведется в СО РАН применительно к задачам кондиционирования, нагрева, охлаждения в быту и технике.

Возобновляемые источники энергии

Теперь перейдем к основному разделу нетрадиционной энергетики - возобновляемым источникам энергии. Начнем с солнечной энергетики, которая обладает самым большим потенциалом из возобновляемых источников. В солнечной энергетике выделяют 3 направления: солнечные водонагревательные установки, солнечные электростанции и фотоэлектрические преобразователи. Солнечные водонагревательные установки обычно представляют собой плоский солнечный коллектор, в котором нагревается вода, воздух или другой теплоноситель. Эти устройства характеризуются величиной площади нагрева. Суммарная площадь солнечных коллекторов в мире достигает 50-60 млн м2, что эквивалентно 5-7 млн т у. т. в год. В России их применение незначительное. Хотя даже для условий Сибири возможен полезный эффект. В частности, в Новосибирске работа по солнечным коллекторам для индивидуального домостроения ведется в рамках программы «ЭКОДОМ». В строящемся ЭКОпоселке вблизи Академгородка уже сооружаются разного вида солнечные коллекторы, в том числе с подземными аккумуляторами тепла.

Солнечные электростанции (СЭС) используют обычный паросиловой цикл, но при этом требуется применение концентратора солнечной энергии. Так, в США действует 7 СЭС общей мощностью 354 МВт. Но для России такие устройства считаются неэффективными.

Что касается фотоэлектрических преобразователей (ФЭП), то сегодня в мире наблюдается настоящий бум в этой области. В 2000 году в мире было произведено ФЭП общей мощностью 260 МВт. Больше всего в Японии - 80 МВт. А в России пренебрежимо мало - лишь 0,5 МВт. КПД ФЭП достигают 24% для монокристаллических преобразователей, 17% - для поликристаллических и 11% - для аморфных. Основным материалом является кремний. К сожалению, фотоэлектричество сегодня является самым дорогим способом получения электроэнергии. Цена модулей ФЭП достигает 4000 долл./кВт, а установок на их основе - даже до 10000. Самой дорогой является и стоимость производимой электроэнергии: 15-40 центов/кВтч. В области фотоэлектричества наиболее перспективными считаются следующие направления: ФЭП с концентраторами солнечной энергии; ФЭП на основе арсенида галлия - арсенида алюминия; тонкопленочные солнечные элементы.

По нашему мнению, тонкопленочные солнечные элементы, может быть, даже представляют наибольший интерес в связи с их относительной дешевизной, связанной с существенно уменьшенным использованием чувствительного материала и более дешевыми технологиями. В качестве примера приведем разработку Института теплофизики СО РАН, основанную на высокоскоростном струйном плазмохимическом методе. Суть его заключается в том, что создается сверхзвуковая струя моносилана в атмосфере аргона, которая облучается пучком электронов, вследствие чего на нагретой подложке формируется тонкая пленка аморфного или поликристаллического кремния с очень высокой скоростью осаждения. Скорость осаждения кремния до 500 раз превышает скорость осаждения в диффузионных методах. Кроме того, в разработанном методе достигается максимальная энергоэффективность. В итоге ожидается, что в силу этих и других факторов стоимость получаемых материалов будет достаточно низкой с точки зрения массового производства и применения солнечных элементов. В частности, по оценкам, длина производственной линии и капитальные вложения в завод по производству солнечных элементов одной и той же мощности в нашем проекте примерно на порядок меньше по сравнению с другими зарубежными проектами. На фото (рис. 3) показан опытный стенд для производства пленок кремния плазмохимическим методом, изготовленный за счет средств ОАО «ТВЭЛ». Планируется производство солнечного кремния с использованием данного метода в Новосибирске на базе ПО «Север».

К ветровой энергии как возобновляемому источнику энергии наибольший интерес проявляется в Германии, США, Дании. В 2002 году суммарная мощность ветроэнергетических установок в мире составила 31,1 ГВт. Это достаточно большая величина, и ожидается дальнейший существенный рост в будущем, хотя есть ряд экологических проблем, связанных с сильным шумом от установок и большой площадью отчуждения земель. В России использование ветра в энергетике незначительно и основано преимущественно на зарубежном оборудовании. Тем не менее в СО РАН (ИТПМ) есть оригинальная разработка ветроэнергетической установки с вращающимися цилиндрами. Ее преимущество проявляется при низких скоростях ветра 2-6 м/с. Запланировано промышленное производство.

Использование другого вида ВИЭ - геотермальной энергии - в России может быть весьма существенно, поскольку Россия обладает высоким потенциалом геотермальной энергии, а Западная Сибирь является самым богатым регионом страны по ее запасам. Считается, что если температура геотермальных источников превышает 100°С, то выгодна генерация электрической энергии на ГеоЭС. Если температура немного меньше 100°С, то горячая вода может быть использована для теплоснабжения, а при пониженных температурах необходимо использование тепловых насосов. Следует заметить, что в Сибирском отделении имеется очень хороший опыт использования геотермальной энергии в энергетике. В 1970 году была сооружена на Камчатке Паратунская ГеоЭС по проекту ИТФ СО АН СССР, где впервые в мире была применена фреоновая турбина мощностью 815 кВт, она работала на горячей воде с температурой всего 80°С. Сейчас в мире общая мощность систем геотермального теплоснабжения составляет 17 ГВт, а мощность ГеоЭС - 10 ГВт. В России на Камчатке функционируют Верхнемутновская ГеоЭС (12 МВт) и первый блок Мутновской ГеоЭС мощностью 50 МВт с перспективой до 220 МВт. Подчеркнем, что температура геотермальных источников в Новосибирской области достигает 39°C, а в Томской области - даже 85°С. Есть опыт применения тепловых насосов для теплоснабжения сельских объектов. Одним из новых способов получения электрической энергии с использованием горячей воды от геотермальных источников является гидропаровая турбина, которая была недавно разработана независимо на ЗАО «ЭНЕРГИЯ» и НПВП «ТУРБОКОН» и принцип действия которой основан на применении Сегнерова колеса.

Вторичные возобновляемые источники энергии

Из вторичных возобновляемых источников энергии особое внимание обратим на горючие твердые бытовые отходы (ТБО). Бытовые и другие отходы - это одна из крупных экологических проблем современного общества. Особенность ТБО заключается в том, что их можно использовать для получения тепловой электрической энергии. Наибольшее количество ТБО производят США - 250 млн тонн в год. При этом 10% отходов сжигаются, и вырабатывается тепловая и электрическая энергия. Количество мусоросжигательных заводов США составляет 125 единиц (1993 год). В Японии функционируют 1800 мусоросжигательных установок, на которых сжигается 72% бытовых отходов. В ряде стран приняты национальные программы по переработке отходов и получению из них значительного количества тепловой и электрической энергии. Россия производит 60 млн тонн ТБО в год, но действует всего около 5 мусоросжигательных заводов, и только 2 из них построены на современном уровне с использованием импортного оборудования. Тем не менее в Москве планируется, что к 2010 году только 1/3 отходов будет подвергаться захоронению, а почти половина будет сжигаться с одновременным получением энергии. В Новосибирске производится достаточно много отходов - 0,5 млн тонн в год. Здесь тоже неоднократно поднимался вопрос о разных способах переработки отходов, включая сжигание с выработкой энергии. Возможны различные способы получения энергии из ТБО, один из них - получение биогаза, который является продуктом анаэробного брожения в свалках и представляет собой примерно равную смесь метана и углекислого газа. Далее биогаз подвергается очистке и используется для сжигания в различных установках. Но в России действуют только 2 демонстрационные установки.

Другой способ заключается в переработке отходов в термической плазме, то есть при высоких температурах, которые позволяют радикально переработать всю органику и не допустить образования особо опасных веществ типа диоксинов и фуранов. В частности, разработаны методы пиролиза, газификации и сжигания бытовых и промышленных отходов с получением синтез-газа и тепла на установках с использованием электродугового плазмотрона (ИТ СО РАН, ИТПМ СО РАН), а также плазмотрона с жидкометаллическими электродами (ИТ СО РАН). Но по нашему мнению, это довольно дорогие и сложные технологии и их надо использовать для уничтожения опасных отходов или специальных целей. Для массовой переработки муниципальных отходов больше подходит, как мы считаем, проект, который называется КРТС - комплексная районная тепловая станция. Этот проект разработан специалистами ИТ СО РАН, Техэнергохимпрома и ВНИПИЭТа. Проект основан на использовании барабанной вращающейся печи с последующим дожиганием горючих газов в вихревом дожигателе. Предусмотрена глубокая очистка дымовых газов в соответствии с требованиями ЕС по вредным выбросам. Особенность проекта состоит в том, что предусмотрено производство тепловой и электрической энергии, а также строительных материалов. Станция рассчитана на переработку 40 тысяч тонн ТБО в год, что соответствует городскому району с населением 100 тысяч жителей, с одновременной выработкой тепловой энергии в количестве 100 тыс. Гкал. Такого количества тепла достаточно для обогрева более половины институтов Новосибирского научного центра. Капитальные вложения составляют 200-300 млн рублей, что в несколько раз меньше аналогичных зарубежных проектов. Сейчас подготовлены проекты и предложения для двух площадок - Советского района, Гусинобродской свалки - города Новосибирска, г. Бердска и Сахалинской области.

Нетрадиционные технологии использования невозобновляемых и возобновляемых источников энергии

К нетрадиционным технологиям в первую очередь следует отнести водородную энергетику. Она интересна прежде всего тем, что применяется водород, который имеет теплотворную способность в 2,5 раза выше, чем природный газ, и запасы его неограничены, он экологичен, единственный продукт сгорания - это вода. И еще очень важно, что его можно применять в топливных элементах, где осуществляется прямое преобразование химической энергии в электрическую.

К водородной энергетике как таковой следует отнести:

  • крупномасштабное производство водорода из ископаемых и возобновляемых источников энергии;
  • производство топливных элементов и энергоустановок на их основе;
  • хранение и транспортировку водорода;
  • использование водорода для получения энергии в промышленности, на транспорте, в быту;
  • водородную безопасность.

В основном водород получают путем конверсии природного газа. В Институте теплофизики СО РАН разработан новый струйный плазмохимический метод конверсии. По заказу «Лукойла» сейчас осуществляется проект по конверсии природного газа в водород, и изготавливается установка мощностью 250 кубометров в час.

В связи с увеличением роли угля в энергетике и экономике встает вопрос о существовании повышения эффективности использования угля. Особое внимание планируется уделять глубокой переработке угля, когда генерируется не только энергия, но еще и производятся ценные химические продукты. Одним из главных направлений переработки является газификация угля, в числе целей которой - получение синтез-газа или водорода для водородной энергетики. В СССР в 1958 г. действовали 2500 газогенераторов общей производительностью 15 млн т угля в год. В последующие годы из-за преобладающей роли природного газа все эти установки перестали функционировать. И только в последнее время опять наблюдается рост интереса к газификации с приоритетом установок внутрицикловой газификации назначение которых - производство электроэнергии. При этом реализуется обычно бинарный цикл - горючий газ сжигается в газовой турбине, а продукты сгорания подаются в паровой котел. Что касается газогенератора как такового, то имеется достаточное количество отработанных схем, из которых наиболее известными являются газификаторы Винклера (с кипящим слоем), Лурги (с повышенным давлением в слое), Копперса-Тотцека (с пылеугольным потоком) и Тексако (на водоугольной суспензии). Заметим, что 15 лет назад была провозглашена Федеральная программа «Экологически чистая энергетика», ряд проектов которой был связан в газификацией угля. Только лишь один проект Березовской ГРЭС-2 предполагал сооружение 8 парогазовых установок общей мощностью 8 ГВт! А это почти столько, сколько сегодня получают в мире всего электроэнергии за счет внутрицикловой газификации. К сожалению, по известным причинам упомянутая программа даже не была начата.

ImageВ Сибири имеется ряд перспективных разработок по газификации угля. В частности, развиваются технологии слоевой и плазменно-паровой газификации. В последнем случае (рис. 4) получается очень чистый синтез-газ с высоким содержанием водорода - до 50%.

Говоря о водородной энергетике, отметим, что кроме методов производства водорода и его использования в топливных элементах необходимо по-прежнему уделять внимание и способам прямого сжигания водорода в энергетических установках и двигателях. Так, новый подход к использованию водорода в энергетике заключается в дожигании водорода вместе с паром. В результате достигаются более высокие параметры пара и, соответственно, более высокий КПД турбины - до 55%.
Чрезвычайно перспективное направление - применение как паровых, так и газовых турбин в малой энергетике. В России имеется огромное количество котельных, которые предназначены для теплоснабжения, но в то же время вырабатывают пар с высокими параметрами (давление до 39 атмосфер). Такой пар можно использовать для выработки электроэнергии в паровых противодавленческих турбинах. Оцениваемый потенциал составляет 25 тыс. МВт (12% от установленной мощности в РАО «ЕЭС России»). Причем расход топлива на генерацию электричества оказывается в 2 раза ниже, чем в РАО «ЕЭС». Сейчас на котельной ННЦ СО РАН реализуется проект с установкой противодавленческой турбины мощностью 6 МВт.

Оригинальная нетрадиционная технология использования угля, предложенная в ИТ СО РАН, состоит в том, чтобы сжигать его в виде пыли ультратонкого помола (микроуголь). В текущем отопительном сезоне планируется перевести газомазутный котел мощностью 4 МВт на сжигание микроугля (на Бийском котельном заводе). Еще более оригинальным является предложение сжигать уголь с помолом до 5 мкм в газотурбинных установках.

В Институте катализа СО РАН успешно развивается другое направление - каталитическое сжигание разнообразных топлив. Особенности такого подхода весьма привлекательны: низкие температуры горения, малые габариты установок, пониженные выбросы вредных веществ.